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QUANTITATIVE FINANCIAL ECONOMICS 

(2ND Edition 2004) 

 

CHAPTER 15 

BEHAVIOURAL MODELS  
AIMS: 

 Show how rational traders and noise traders interact to give equilibrium prices which diverge from 

fundamental value and how rational traders may be destabilizing. 

 

 Examine how short-termism could lead to mispricing. 

 

 Analyze how noise traders (e.g. momentum traders, style investors) and fundamentals traders 

interact to product underreaction followed by overreaction in stock prices and cross-correlations 

between different classes of stocks 

 

 Demonstrate how a non-standard utility function incorporating both consumption and ‘other 

variables’ in an intertemporal optimizing model where investors suffer from loss-aversion, can 

explain the ‘stylised facts’ of stock returns such as excess volatility, predictability and the equity 

premium puzzle. 

 

So far we have been discussing the implications of noise traders in fairly general terms and now it is time 

to examine more formal models.  One set of models assumes noise traders and rational traders interact to 

give equilibrium prices which clear the market.  A second broad approach assumes all agents are identical 

but have non-standard preferences – here utility depends on the change in wealth as well as the level of 

consumption and agents may fear losses more than gains.  These models often assume intertemporal 

utility maximization as in the ‘standard approach’. 

 

1.  A SIMPLE MODEL 

Shiller (1989) provides a simple piece of analysis in which stylized empirical results can be explained by 

the presence of noise traders.  The proportionate demand for shares by the smart money is Q and is 

based (loosely) on the mean-variance model: 

 

[1]  /)( 1  ttt REQ  
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If 1tt RE  demand by the smart money equals zero.  If ,1
t

Q  the smart money holds all the 

outstanding stock and this requires an expected return  1tt RE .  Hence   is a kind of risk 

premium to induce the smart money to hold all the stock. 

 

We now let )/( tPY  equal the proportion of stock held by noise traders.  In equilibrium, the proportions 

held by the smart money and the noise traders must sum to unity: 

 

[2] 1)/(  tt PYQ  

 

substituting [1] in [2] 

 

[3]   )]/(1[1 ttt PYRE  

 

Hence the expected return as perceived by the smart money depends on what they think is the current 

and future demand by noise traders:  the higher is noise trader demand, the higher are current prices and 

the lower is the expected return perceived by the smart money.  Using [3] and the definition 

 

[4] ]1/)[( 111   tttttt PDPERE  

 

we obtain 

 

[5] )( 11 ttttt YDPEP     

 

where ).1/(1     Hence by repeated forward substitution: 

 

[6] 


 
0

11 )( tttt

t

t YEDEP   

 
If the smart money is rational and recognizes demand by noise traders, then the smart money will 

calculate that the market clearing price is a weighted average of fundamentals (i.e. )1tt DE  and future 

noise trader demand 1ttYE .  The weakness of this ‘illustrative model’ is that noise trader demand is 

completely exogenous.  However, as we see below, we can still draw some useful insights. 
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If 1ttYE  and hence aggregate noise trader demand is random around zero then the moving average of 

1ttYE  in [6] will have little influence on tP  which will be governed primarily by fundamentals.  Price will 

deviate from fundamentals but only randomly.  On the other hand, if demand by noise traders is expected 

to be persistent (i.e. ‘large’ values of tY  are expected to be followed by further large values) then small 

changes in current noise trader demand can have a powerful effect on current price, which might deviate 

substantially from fundamentals over a considerable period of time. 

Shiller (1989) uses the above model to illustrate how tests of market efficiency based on regressions of 

returns on information variables known at time t , have low power to reject the EMH when it is false. 

Suppose dividends (and the discount rate) are constant and hence the EMH (without noise traders) 

predicts that the stock price is constant.  Now suppose that the market is actually driven entirely by noise 

traders.  Let noise trader demand be characterized by 

 

[7] nttttt uuuuY   ...321  

 

where tu  is white noise.  Equation [7] has the property that a unit increases in tu  at time t  generates 

changes in Y  in future periods that follow a ‘square hump’ which dies away after n-periods
(1)

.  Using [6] 

price changes ( tt PP 1 ) only arise because of revisions to expectations about future noise trader 

demand which are weighted by 
32 ,,   etc.  Because 10   , price changes are heavily dominated 

by tu  (rather than by past jtu  ).  However as tu  is random, price changes in this model, which by 

construction is dominated by noise traders, are nevertheless largely unforecastable. 

 

Shiller generates a 1tP  series using [6] for various values of the persistence in Yt (given by the lag 

length n) and for alternative values of   and  .  The generated data for 1tP  is regressed on the 

information set consisting only of tP .  Under the EMH we expect the R-squared of this regression to be 

zero.  For 2.0,0    and 20n  he finds .015.02 R   The low R-squared supports the constant 

returns EMH, but it results from a model where price changes are wholly determined by noise traders.  In 

addition, the price level can deviate substantially from fundamentals even though price changes are hardly 

forecastable.  He also calculates that if the generated data includes a constant dividend price ratio of 4% 

then the ‘theoretical R-squared’ of a regression of the return 1tR  on the dividend price ratio tPD )/(  is 

0.079.  Hence empirical evidence that returns are only weakly related to information at time is not 

necessarily inconsistent with prices being determined by noise traders (rather than by fundamentals).  



 K.Cuthbertson          4 

___________________________________________________________________________________________ 

 Keith Cuthbertson : Do not quote or reproduce without author's permission 

Overall, Shiller makes an important point about empirical evidence.  The evidence using real world data is 

not that stock returns are unpredictable (as suggested by the EMH) but that stock returns are not very 

predictable.  However, the latter evidence is also not inconsistent with possible models in which noise 

traders play a part. 

 

If the behaviour of Yt is exogenous (i.e. independent of dividends) but is stationary and mean reverting 

then we might expect returns to be predictable.  An above average level of Y will eventually be followed by 

a fall in Y (to its mean long-run level). Hence prices are mean reverting and current returns are predictable 

from previous periods returns. 

 

In addition this sample noise trader model can explain the positive association between the dividend-price 

ratio and next periods return on stocks.  If dividends vary very little over time, a price rise caused by an 

increase in 1tEY  will produce a fall in the dividend price ratio.  If tY  is mean reverting than prices will fall 

in the future, so returns 1tR  also fall.  Hence tPD )/(  is positively related to returns 1tR  as found in 

empirical studies.  Shiller also notes that if noise trader demand 1tY  is influenced either by post returns 

(i.e. bandwagon effect) or past dividends then the share price might overreact to current dividends 

compared to that given by the first term in [6], that is the fundamentals part of the price response. 

 

2.  OPTIMISING MODEL OF NOISE TRADER BEHAVIOUR 

In the ‘neat’ model of De Long, Shleifer, Summers and Waldmann (DSSW, 1990), both smart money and 

noise traders are risk averse and maximize utility of terminal wealth.  There is a finite horizon, so that 

arbitrage is risky.  The (basic) model is constructed so that there is no fundamental risk (i.e. dividends are 

known with certainty) but only noise trader risk.  The noise traders create risk for themselves and the 

smart money by generating fads in demand for the risky asset.  The smart money forms optimal forecasts 

of the future price based on the correct distribution of price changes but noise traders have biased 

forecasts.  The degree of price misperception of noise traders t represents the difference between the 

noise trader forecasts and optimal forecasts:



[8]  )*,(~ 2 Nt  

 

If  = 0, noise traders forecasts agree with those of the smart money (on average).  If noise traders are 

on average pessimistic (e.g. bear market) then 0*  , and the stock price will be below fundamental 

value and vice versa.  As well as having this long-run view *  of the divergence of their forecasts from 

the optimal forecasts, 'news' also arises so there can be abnormal but temporary variations in optimism 
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and pessimism, given by a term, *)(  t .  The specification of t  is ad-hoc but does have an intuitive 

appeal based on introspection and evidence from behavioural/group experiments. 

 

In the DSSW model the fundamental value of the stock is a constant and is arbitrarily set at unity.  The 

market consists of two types of asset: a risky asset and a safe asset.  Both noise traders and smart 

money are risk averse and have mean-variance preferences, so their demand for the risky asset depends 

positively on expected return and inversely on the noise trader risk (see Appendix I).  The noise trader 

demand also depends on whether they feel bullish or bearish about stock prices (i.e. the variable t).  The 

risky asset is in fixed supply (set equal to unity) and the market clears to give an equilibrium price Pt.  The 

equation which determines Pt looks rather complicated but we can break it down into its component parts 

and give some intuitive feel for what's going on: 

 

[9] 
2

22
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where   = the proportion of investors who are noise traders, r  = the riskless real rate of interest,   = 

the degree of (absolute) risk aversion, 
2  variance of noise trader misperceptions.  If there are no noise 

traders   = 0 and [9] predicts that market price equals fundamental value (of unity).  Now let us suppose 

that at a particular point in time, noise traders have the same long run view of the stock price as does the 

smart money (i.e. *  = 0) and that there are no 'surprises', (i.e. no abnormal bullishness or bearishness), 

so that, 0*)(  t . 

 

We now have a position where the noise traders have the same view about future prices as does the 

smart money.  However, the equilibrium market price still does not solely reflect fundamentals and the 

market price is less than the fundamental price - given by the last term on the RHS of equation [9].  This is 

because of the presence noise trader risk, since their potential actions may influence future prices.  The 

price is below fundamental value so the smart money (and noise traders) may obtain a positive expected 

return (i.e. capital gain) as compensation for the noise trader risk.  This mispricing is probably the key 

result of the model and involves a permanent deviation of price from fundamentals.  We refer to the effect 

of the third term in [9] as the amount of 'basic mispricing'. 

 

Turning now to the second term in equation [9] we see for example that the noise traders will push the 

price above fundamental value if they take a long-term view that the market is bullish )0*(  .  The third 
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term reflects abnormal short-term bullishness or bearishness.  These terms imply that at particular time 

periods price may be above or below fundamentals. 

 

If only t  varies so that * t  is random around zero then the actual price would deviate randomly 

around its 'basic mispricing' level.  In this case stock prices would be 'excessively volatile' (relative to 

fundamentals) where volatility is zero.  From [9] the variance of prices is : 
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Hence excess volatility is more severe, the greater is the variability in the misperceptions of noise traders 

,2  the more noise traders there are in the market   and the lower is the cost of borrowing funds r .  To 

enable the model to reproduce persistence in price movements and hence the broad bull and bear 

movements in stock prices that we observe, we need to introduce 'fads' and 'fashions'.  Broadly speaking 

this implies, for example, that periods of bullishness are followed by further periods of bullishness.  Which 

can be represented by a random walk in 
*

t  : 

 

[11]  ttt   

*

1

*
 

 

where ),0(~ 2

wt N  .  (Note that 
2

  is different from 
2 ,above).  At any point in time the investor’s 

optimal forecast of *  is its current value.  However as 'news' t  arrives, noise traders alter their views 

about 
*

t  and this 'change in perceptions' persists over future periods.  It should be clear from the second 

term in [9] that the random walk in 
*

t  implies tP  will move in long swings and hence there will be 'bull 

and bear' patterns in tP . 

 

Fortune (1991) assumes for illustrative purposes, t  and )( * t  are niid and uses representative 

values for ,,, r  in [9].  He then generates a time series for tP  shown in (figure 1).  The graph indicates 

that on this one simulation, price falls to 85% of fundamental value (which itself may be rising) with some 

dramatic rises and falls in the short-run. 

 

Figure 1 – Fortune-here 

An additional source of persistence in prices could be introduced into the model by assuming that 
2  is 

also autoregressive (e.g. ARCH and GARCH processes).  It is also not unreasonable to assume that the 

'conversion rate' from being a smart money trader to being a noise trader may well take time and move in 
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cycles.  This will make   (i.e. the proportion of noise traders) exhibit persistence and hence so might tP .  

It follows that in this model, price may differ from fundamentals for substantial periods of time because 

arbitrage is incomplete.  Also, persistence in * t  could be mean reverting.  This would imply that 

prices are mean reverting and that returns on the stock market are partly predictable from past returns or 

from variables such as the dividend-price ratio. 

 

 

CAN NOISE TRADERS SURVIVE? 

De Long et al show that where the proportion of noise traders is fixed in each period (i.e.  is constant) it is 

possible (although not guaranteed) that noise traders do survive, even though they tend to buy high and 

sell low (and vice versa).  This is because they are over-optimistic and under-estimate the true riskiness of 

their portfolio.  As a consequence, they tend to 'hold more' of the assets subject to bullish sentiment.  In 

addition, if noise trader risk  is large, the smart money will not step in with great vigour, to buy 

underpriced assets because of the risk involved. 

 

The idea of imitation can be included in the model by assuming that the conversion rate from smart money 

(s) to noise traders (n) depends on the excess returns earned by noise traders over the smart money 

)( sn RR  : 

 

[12]  t

sn

tt RR )(1    

 

where   is bounded between 0 and 1.  De Long et al also introduce fundamental risk into the model.  

The per period return on the risky asset becomes a random variable, tr   where ),0(~ 2

 Nt .  In 

this version of the model, the probability of noise trader survival is always greater than zero.  This is 

because of what they call the 'create space' effect, whereby risk is increased to such an extent that it 

further inhibits risk averse smart money from arbitraging any potential gains.  (The latter result requires   

to be 'small', since otherwise the newly converted noise traders may influence price and this would need to 

be predicted by the 'old' noise traders who retire). 

 

CLOSED END FUNDS 

We have noted that closed-end funds often tend to sell at a discount and this discount varies over time, 

usually across all funds.  Sometimes such funds sell at a premium.  Using our noise trader model we can 

get a handle on reasons for these ‘anomalies’.  Let the risky asset be the closed end fund itself and the 

safe asset the actual underlying stocks.  The smart money will try and arbitrage between the fund and the 
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underlying stocks (e.g. buy the fund and sell the stocks short, if the fund is at a discount).  However, even 

if 0*  t , the fund (risky asset) will sell at a discount because of inherent noise trader risk (see [9]).  

Changes in noise trader sentiment (i.e. in *  and * t   will cause the discounts to vary over time 

and as noise trader risk is systematic we expect discounts on most funds to move together. 

 

In the noise trader model a number of closed end funds should also tend to be started at the same time, 

namely when noise trader sentiment for closed end funds is high (i.e. )0,0*  t  When existing 

closed end funds are at a premium it pays the smart money to purchase shares (at a relatively low price) 

bundle them together into a closed end fund and sell them at a premium to optimistic noise traders. 

 

CHANGES IN BOND PRICES 

Empirically, when the long-short spread )( rR   on bonds is positive, then long rates tend to fall, and the 

prices of long bonds rise.  This is the opposite of the pure expectations hypothesis of the term structure.  

The stylised facts of this anomaly are consistent with our noise trader model with the long bond being the 

risky asset (and the short bond the safe asset).  When tt rR   then the price of long bonds as viewed by 

noise traders may be viewed as abnormally low.  If noise trader fads are mean reverting, they will expect 

bond prices to rise in the future and hence long rates R  to fall.  This is what we observe in the empirical 

work.  Of course, even though the noise trader model explains the stylised facts this will leaves us a long 

way from a formal test of the noise trader model in the bond market. 

 

Overall, the key feature of the De Long et al model is to demonstrate the possibility of underpricing in 

equilibrium.  The other effects mentioned above depend on one's adherence to the possibility of changes 

in noise trader sentiment, which are persistent.  However, 'persistence' is not the outcome of an optimising 

process in the model, although it is an intuitively appealing one. 

 

SHORT TERMISM 

In a world of only smart money, the fact that some of these investors take a 'short-term' view of returns 

should not lead to a deviation of price from fundamentals.  The argument is based on the implicit forward 

recursion of the rational valuation formula.  If you buy today at time t, in order to sell tomorrow, your return 

depends (in part) on the expected capital gain and hence on the price you can get tomorrow.  But the 

latter depends on what the person you sell to at t+1 thinks the price will be at t+2 etc.  Hence a linked 

chain of short term 'rational fundamental' investors performs the same calculation as an investor with an 

infinite horizon. 
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With a finite investment horizon and the presence of noise traders the above argument doesn't hold.  

True, the longer the horizon of the smart money the more willing she may be to undertake risky arbitrage 

based on divergences between price and fundamental value.  The reason being that in the meantime she 

receives the insurance of dividend payments each period and she has a number of periods over which 

she can wait for the price to rise to fundamental value.  However, even with a 'long' but finite horizon there 

is some price resale risk.  The share in the total return from dividend payments over a 'long' holding period 

is large but there is still substantial risk present from uncertainty about price in the 'final period'. 

We note from the noise trader model that if a firm can make its equity appear less subject to noise trader 

sentiment (i.e. to reduce 
2 ) then its underpricing will be less severe and its price will rise.  This reduction 

in uncertainty might be accomplished by 

 

a) raising current dividends (rather than investing profits in an uncertain long term investment project 

for example, R&D expenditures) 

b) swapping debt for equity 

c) share buybacks 

 

Empirical work by Jensen (1986) and many others has shown that items (a)-(c) do tend to lead to an 

increase in the firm's share price and this is consistent with our interpretation of the influence of noise 

traders described above.  It follows that in the presence of noise traders one might expect changes in 

capital structure to affect the value of the firm (contrary to the Modigliani-Miller hypothesis). 

 

 

DESTABILISING RATIONAL TRADERS  

In the DeLong et al (1990a) model above, the rational traders always move prices back towards 

fundamentals but not sufficiently to eliminate the mispricing of the ‘momentum’ noise traders.  Suppose 

we accept the presence of momentum traders, who buy (sell) after a price rise (fall).  The anecdotal 

evidence for this is quite strong.  Some Chartists are known to chase ‘trends’, while stop-loss orders lead 

to selling after a price fall as does forced liquidation of your short position if you face increased margin 

calls that you cannot meet.  Portfolio insurance can also lead to selling (buying) after a price fall (rise).  For 

example, if you have sold (written) a call option (to a customer) then you hedge the position by buying 

stocks (i.e. delta hedging).  If stock prices subsequently fall, the value of the written call also falls and your 

new hedge position requires that you sell some of your stocks.  (Strictly portfolio insurance applies to 

replication of a ‘stock plus put’ portfolio with a ‘stock plus futures’ portfolio but our delta hedge example 

gives a similar result).  So, portfolio insurance logically implies that you sell stocks after a price fall (and 

buy stocks after a price rise) – see Cuthbertson and Nitzsche (2001b).  There is also experimental 
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evidence (Andreassen & Kraus 1988) where economics students when faced with actual stock price data, 

tend to sell after a small price rise (and vice-versa) but buy after a run of price rises (i.e. momentum). 

 

DeLong et al (1990b) use the analytic framework developed above but now allow the rational traders, 

(who are aware of momentum buying by noise traders) to anticipate momentum behaviour.  Hence 

rational traders also buy after a price rise.  The rational traders hope to ‘ride the wave’ caused by the 

momentum traders, but to sell before price begins to fall back to its fundamental value.  The short-run 

behaviour of arbitrageurs is therefore destabilising and creates even larger short-run positive 

autocorrelation in returns (after the arrival of new fundamental’s news), but returns are mean-reverting 

over long-horizons (i.e. negative autocorrelation). 

 

Space constraints dictate that we cannot develop the model fully here, but merely sketch out the salient 

features.  The model has 4 time periods (0, 1, 2, 3) and three types of trader.  Rational traders maximise 

end-of-period wealth (consumption) and have mean-variance asset demands, (i.e. proportional to next 

period’s expected return and inversely related to the variance of returns).  Momentum traders’ demand 

depends on the previous period’s price change while the ‘passive investors’ demand for the risky asset 

depends on last period’s price (i.e. a mechanical buy low – sell high strategy).  The market clears in each 

period and there is a noisy signal about fundamentals (i.e. dividends) which influences the demand of the 

rational traders and hence their view of future actions by momentum traders.  Good public news at time-t 

= 1 about (end-of-period-3) dividends leads to a rise in prices due to the fundamentals traders.  In turn this 

causes an increase in demand by momentum traders at t=2 and finally a fall in prices in period-3, back to 

their fundamental level.  There can be overshooting even if rational traders do not anticipate future 

increased momentum traders’ demand, but the overshooting is exacerbated if rational traders ‘jump on 

the bandwagon’.  So an increase in the number of forward-looking rational traders entering the model can 

increase the ‘overshooting’.   

 

The model is consistent with anecdotal evidence about the ‘players’ in the market.  Investment banks have 

‘insider’ information about customer order flow and may use this to anticipate future demands by 

momentum traders (see chapter ?? on market microstructure).  A stronger variant of this is ‘front running’, 

where marketmakers purchase (sell) on their own account before executing the buy-sell orders given to 

them by their customers.  (This attracted the attention of the New York Attorney General, Eliot Spitzer in 

2003).  In the US, ‘Investment Pools’ often generate interest in ‘hot-stocks’, so as to attract momentum 

investors.  George Soros’ (1987) investment strategy in the 1960s and 1970s could also be viewed as 

betting on future crowd behaviour when he took (successful) long horizon bets on stocks involved in 

conglomerate mergers throughout the 1960 and in Real Estate Investment Trust stocks throughout the 

1970s.  In September 1992 he also successfully implemented a short-horizon strategy of selling the pound 
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sterling from which he is reputed to have made $1bn over a few weeks (although whether this was 

‘chasing trends’ or a fundamental misalignment is debateable). 

 

Evidence from survey date on FX forecasting services (Frankel & Froot 1988) indicates that during the 

mid 1980s the ‘inexorable’ rise of the USD (with unchanged interest differentials) led forecasters to predict 

both a rise in the US dollar over one month and a depreciation by the end of the year.  Their 

recommendation to investors was to buy today even though they thought the USD was overpriced relative 

to fundamentals.  The DeLong (1990b) model demonstrates that this is a perfectly rational statement. 

 

A weakness of the model is that the momentum traders are really dumb and should lose money and 

hence be forced out of the market.  This criticism can be answered by assuming additional momentum 

traders (e.g. using new techniques such as neutral networks and genetic algorithms) enter the market or, 

existing momentum traders return with new backers. (If you read the Financial Times or Wall Street 

Journal you will have noted this occurs quite frequently, although with the recent tougher environment on 

Wall Street this may occur less often in the future).  Also, if lots of momentum traders lose money over the 

same period, they can claim ‘everybody did badly’ and they may retain their investment mandates.  There 

is evidence to suggest that pension fund mandates are not altered because of absolute losses but 

because of worse losses than your competitors – so some momentum traders may remain in the market.  

Also, such mandates are decided by a wide variety of factors other than ‘return’ (e.g. management costs, 

provision of analysts’ research and investment ‘style’)  The earlier model of DeLong et al (1990a) shows 

that noise traders may carry more market risk than the rational traders, so even if they make judgement 

errors, they can earn positive returns. 

      

3. SHLEIFER-VISHNY MODEL: SHORT-TERMISM  

The underpricing of an individual firm's stock is not a direct result of the formal noise-trader model of De 

Long et al since this formal model requires noise trader behaviour to be systematic across all stocks. 

However, the impact of high borrowing costs on the degree of mispricing in individual shares has been 

examined in a formal model by Shleifer and Vishny (1990).  They find that current mispricing is most 

severe for those stocks where mispricing is revealed at a date in the distant future (rather than next 

period, say).  Suppose physical investment projects with uncertain long horizon payoffs are financed with 

shares whose true value is only revealed to the market after some time.  In the Shleifer-Vishny model 

these shares will be severely underpriced.  It follows that the firm might be less willing to undertake such 

long horizon, yet profitable projects and short-termism on the part of the firm's managers might ensue.  

That is, they choose less profitable short-term investment projects rather than long term projects since this 

involves less current undervalution of the share price and less risk of them loosing their jobs from a hostile 
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takeover or management reorganisation by the Board of Directors.  This is a misallocation of real 

resources.  We begin our description of this model by considering the infinite horizon case where the 

smart money is indifferent as to when the actual price moves to its fundamental value. 

 

TIMING OF ARBITRAGE PROFITS IN A PERFECT CAPITAL MARKET 

If the smart money can borrow and lend unlimited amounts then she does not care how long it takes a 

mispriced security to move to its fundamental value.  In table 1 we consider a simple case of underpricing 

where the cost of borrowing r, and the fundamentals return on the security (i.e. dividend return q) are 

identical at 10%.  If the mispriced security moves from $5 to its fundamental value of $6 after only one 

period, the price including the dividend payout is $6 (1+q) = $6.6 in period-1.  At the end of period-1 the 

arbitrageur has to pay back the loan plus interest, that is $5 (1+r) = $5.5.  If the price only achieves its 

fundamental value in period-2 the arbitrageur receives $6 (1+q)2 = $7.26 at t+2 but has to pay out 

additional interest charges between t+1 and t+2.  However in present value terms the arbitrageur has an 

equal gain of $1 regardless of when the mispricing is irradicated.  Also, with a perfect capital market she 

can take advantage of any further arbitrage possibilities that arise since she can always borrow more 

money at any time. 

Table 1 – Arbitrage Returns – here  

In the case of a finite horizon, fundamentals and noise trader risk can lead to losses from arbitrage.  If 

suppliers of funds (e.g. banks) find it difficult to assess the ability of arbitrageurs to pick genuinely 

underpriced stocks, they may limit the amount of funds to the arbitrageur.  Also, they may charge a higher 

interest rate to the arbitrageur because they have less information on her true performance than she 

herself does (i.e. the interest charge under asymmetric information is higher than that which would occur 

under symmetric information). 

 

If r = 12% in the above example, while the fundamentals return on the stock remains at 10% then the 

arbitrageur gains more if the mispricing is eliminated sooner rather than later.  If a strict credit limit is 

imposed then there is an additional cost to the arbitrageur, namely that if money is tied up in a long-

horizon arbitrage position then she cannot take advantage of other potentially profitable arbitrage 

opportunities. 

 

An arbitrageur earns more potential $ profits the more she borrows and takes a position in undervalued 

stocks.  She is therefore likely to try and convince (signal to) the suppliers of funds that she really is 

'smart', by engaging in repeated short-term arbitrage opportunities since long horizon positions are 
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expensive and risky.  Hence, smart money may have an incentive to invest over short horizons rather than 

eliminating long horizon arbitrage possibilities. 

 

The formal model of Shleifer and Vishny (1990) has both noise traders and smart money (see appendix 

2).  Both ‘short’ and ‘long’ assets have a pay-out at the same time in the future but the true value of the 

short asset is revealed earlier than that for the 'long' asset.  In equilibrium, arbitrageurs' rational behaviour 

results in greater current mispricing of 'long assets', where the mispricing is revealed at long horizons.  

The terms 'long' and 'short' therefore refer to the date at which the mispricing is revealed (and not to the 

actual cash payout of the two assets).  Both types of asset are mispriced but the long term asset suffers 

from greater mispricing than the short asset. 

 

In essence the model relies on the cost of funds to the arbitrageur being greater than the fundamentals 

return on the mispriced securities.  Hence, the longer the arbitrageur has to wait before she can liquidate 

her position (i.e. sell the underpriced security) the more it costs.  The sooner she can realise her capital 

gain and pay off 'expensive' debts the better.  Hence, it is the 'carrying cost' or per period costs of 

borrowed funds that is important in the model.  The demand for the long-term mispriced asset is lower 

than that for the short-term mispriced asset and hence the current price of the long-term mispriced asset 

is lower than that for the short-term asset. 

 

Investment projects which have uncertain payoffs (profits) which accrue in the distant future, may be 

funded with assets whose true fundamental value will not be revealed until the distant future (e.g. the 

Channel Tunnel between England and France, where passenger revenues were to accrue many years 

after the finance for the project had been raised).  In this model these assets will be (relatively) strongly 

undervalued. 

 

The second element of the Schleifer and Vishny (1990) argument which yields adverse outcomes from 

short-termism, concerns the behaviour of the managers of the firm.  They conjecture that managers of a 

firm have an asymmetric weighting of mispricing.  Underpricing is perceived as being relatively worse than 

an equal amount of overpricing.  This is because underpricing either encourages the Board of Directors to 

change its managers or managers could be removed after a hostile takeover based on the underpricing.  

Overpricing on the other hand gives little benefit to managers who usually don't hold large amounts of 

stock or whose earnings are not strongly linked to the stock price.  Hence incumbent managers might 

under-invest in long-term physical investment projects. 
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A hostile acquirer could abandon the long-term investment project, hence improve short-term cash flow 

and current dividends, all of which reduce uncertainty and the likely duration of mispricing.  She could then 

sell the acquired firm at a higher price, since the degree of underpricing is reduced when she cancels the 

long term project.  The above scenario implies that some profitable (in DPV terms) long-term investment 

projects are sacrificed because of (the rational) short termism of arbitrageurs, who face 'high' borrowing 

costs or outright borrowing constraints.  This is contrary to the view that hostile takeovers involve the 

replacement of inefficient (i.e. non-value maximizing) managers by more efficient acquirers.  Thus, if 

smart money cannot wait for long-term arbitrage possibilities to unfold they will support hostile takeovers 

which reduce the mispricing and allow them to close-out their arbitrage position more quickly. 

 

4.  CONTAGION  

Kirman's (1993) ‘cute’ model is very different to that of De Long et al in that it explicitly deals with the 

interaction between individuals, the rate at which individuals' opinions are altered by recruitment and 

hence the phenomenon of 'herding' and 'epidemics'.  The basic phenomenon of 'herding' was noted by 

entomologists.  It was noted that ants, when 'placed' equidistant from two identical food sources which 

were constantly replenished, were observed to distribute themselves between each source in an 

asymmetric fashion.  After a time, 80 percent of the ants ate from one source and 20 percent from the 

other.  Sometimes a 'flip' occurred which resulted in the opposite concentrations at the two food sources.  

The experiment was repeated with one food source and two symmetric bridges leading to the food.  

Again, initially, 80 percent of the ants used one bridge and only 20 percent used the other, whereas 

intuitively one might have expected that the ants would be split 50-50 between the bridges.  One type of 

recruitment process in an ant colony is 'tandem recruiting' whereby the ant that finds the food, returns to 

the nest and recruits by contact or chemical secretion.  Kirman notes that Becker (1991) documents 

similar herding behaviour when people are faced with very similar restaurants in terms of price, food, 

service etc. on either side of the road.  A large majority choose one restaurant rather than the other even 

though they have to 'wait in line' (queue).  Note that here, there may be externalities in being 'part of the 

crowd' which we assume does not apply to ants. 

 

We have already noted that stock prices may deviate for long periods from fundamental value.  A model 

that explains 'recruitment', and results in a concentration at one source for a considerable time period and 

then a possibility of a 'flip', clearly has relevance to the observed behaviour of speculative asset prices.  

Kirman makes the point that although economists (unlike entomologists) tend to prefer models based on 

optimising behaviour, optimisation is not necessary for survival (e.g. plants survive because they have 

evolved a system whereby their leaves follow the sun but they might have done much better to develop 



 K.Cuthbertson          15 

___________________________________________________________________________________________ 

 Keith Cuthbertson : Do not quote or reproduce without author's permission 

feet which would have enabled them to walk into the sunlight).  Kirman's model of recruitment has the 

following assumptions : 

 

i) There are 2 views of the world 'black' and 'white' and each agent holds one (and only one) of them 

at any one time. 

ii) There are a total of N-agents and the system is defined by the number )( k  of agents holding 

the 'black' view of the world. 

iii) The evolution of the system is determined by individuals who meet at random and there is a 

probability )1(   that a person is converted ( = probability not converted) from black to white or 

vice versa.  There is also a small probability   that an agent changes his 'colour' independently 

before meeting anyone (e.g. due to exogenous 'news' or the replacement of an existing trader by 

a new trader with a different view). 

iv) The above probabilities evolve according to a statistical process known as a Markov chain and the 

probabilities of a conversion from k  to 1,1  kk  or ‘no change’ is given by : 

 

    k + 1 with probability )1,(1  kkpp  

  k  no change with probability 211 pp    

    k-1 with probability )1,(2  kkpp   
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In the special case ,0   the first person always gets recruited to the second person's viewpoint and 

the dynamic process is a martingale with a final position at 0k  or Nk  .  Also, when the probabiliity 

of being converted (1-) is relatively low and the probability of self-conversion  is high then a 50-50 split 

between the two ensues.  Kirman works out what proportion of time the system will spend in each state 

(i.e. the equilibrium distribution).  The result is that the smaller is the probability of spontaneous conversion 

 relative to the probability of not being converted , the more time the system spends at the extremes that 

is, 100 percent of people believing the system is in one or other of the two states.  (The required condition 

is that  < (1-)/(N-1), see figure 2).  The absolute level of , that is how 'persuasive' individual's are, is not 
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important here but only that  is small relative to 1-.  Although persuasiveness is independent of the 

number in each group, a majority once established will tend to persist.  Hence individuals are more likely 

to be converted to the majority opinion of their colleagues in the market and the latter is the major force in 

the evolution of the system (i.e. the probability that any single meeting will result in an increase in the 

majority view is higher than that for the minority view). 

 

Figure 2 - 8.6 – kirman  here  

Kirman (1991), uses this type of model to examine the possible behaviour of an asset price such as the 

exchange rate which is determined by a weighted average of fundamentalists and noise traders' views.  

The proportion of each type of trader tw  depends on the above evolutionary process of conversion via the 

Markov chain process.  He simulates the model and finds that the asset price (exchange rate) may exhibit 

periods of tranquility followed by bubbles and crashes as is figure 3.  In a later paper Kirman (1993) 

assumes the fundamentals price ftp  follows a random walk and hence is non-stationary, while the noise 

traders forecast by simple extrapolation.  The change in the market price t  is: 

Figure 3 – Kirman- (8.7) – here  

 

[13] 1,1,1 )1(   tnttftt pwpwp   

 

where the noise trader forecast is: 

 

[14a] 11,   tttn ppp   

 

and the fundamentals forecast: 

 

[14b] )(1, tttf ppp    

 

is an error correction model around the long run equilibrium .tp   The weights tw  depend on the 

parameters governing the rate of conversion of market participants.  The weights are endogenous and 

incorporate Keynes' beauty queen idea.  Individuals meet each other and are either converted or not.  

They then try and assess which opinion is in the majority and base their forecasts on who they think is in 

the majority, fundamentalists or noise traders.  Thus the agent does not base her forecast on her own 

beliefs but on what she perceives is the majority view.  The model is then simulated and exhibits a pattern 

that resembles a periodically collapsing bubble.  When the noise traders totally dominate prices are 

constant and when the fundamentalists totally dominate prices follow a random walk.  Standard tests for 
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unit roots are then applied (e.g. Dickey-Fuller 1979, Phillips-Perron 1988) and cointegration tests between 

tp  and tp  tend (erroneously) to suggest there are no bubbles present.  A modification of the test by 

Hamilton (1989) which is designed to detect points at which the system switches from one process to 

another was only moderately successful.  Thus as in the cases studied by Evans (1991), when a 

periodically collapsing bubble is present, it is very difficult to detect. 

 

Of course none of the models discussed in this chapter are able to explain what is a crucial fact, as far as 

public policy implications are concerned.  That is to say, they do not tell us how far away from the 

fundamental price, a portfolio of particular stocks might be.  For example, if the deviation from 

fundamental value is only 5% for a portfolio of stocks, then even though this persists for some time it may 

not represent a substantial misallocation of investment funds, given other uncertainties that abound in the 

economy.  Noise trader behaviour may provide an a priori case for public policy in the form of trading 

halts, during specific periods of turbulence or of insisting on higher margin requirements.  The presence of 

noise traders also suggests that hostile takeovers may not always be beneficial for the predators since the 

actual price they pay for the stock of the target firm may be substantially above its fundamental value.  

However, establishing a prima facie argument for intervention is a long way short of saying that a specific 

government action in the market is beneficial. 

 

5. MOMENTUM AND NEWSWATCHERS 

An interesting model involving the interaction of heterogeneous agents is that of Hong and Stein (1999).  

Momentum traders base their investment decisions only on past price changes while ‘newswatchers’ only 

observe private information which diffuses gradually across the newswatcher population.  Both sets of 

agents are boundedly rational since they do not use all information available.  If there are only 

newswatchers then prices respond monotonically and there is underreaction as news slowly becomes 

assimilated, but there is no overreaction until we introduce momentum traders.  After some good news at 

time-t, prices rise due to the increased demand of newswatchers.  This leads to increased demand by 

some momentum traders at t + 1 which causes an acceleration in prices and further momentum 

purchases.  Momentum traders make most of their profits early in the ‘momentum cycle’.  Momentum 

traders who buy later (at t + i for some i>1)) lose money because prices overshoot their long run 

equilibrium and therefore some momentum traders buy after the peak (i.e. there is negative externality 

imposed on the ‘late’ momentum traders).  The dynamics are the outcome of a market clearing 

equilibrium model but the bounded rationality assumption (e.g. momentum traders only use univariate 

forecasts and do not know when the ‘news’ arrives) is crucial in establishing both short-horizon positive 

autocorrelation and long horizon price reversals (i.e. overshooting). 
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If we allow the introduction of fully informed ‘smart money’ traders into the model, the above conclusions 

continue to hold as long as the risk tolerance of the smart money traders is finite (When the risk tolerance 

of the smart money is infinite then prices follow a random walk). 

 

The model therefore yields predictions that are consistent with observed profits from momentum trading 

(Jegadeesh and Titman 1993, 1999 which may be due to the slow diffusion of initially private information.  

The ‘events literature’ demonstrates that observed public events (e.g. unexpectedly good earnings, new 

stock issues or repurchases, analysts recommendations) lead to post-event price drift (in the same 

direction as the initial event) over horizons of 6-12 months.  The Hong-Stein model can only generate this 

price drift if newswatchers after observing public news require additional private information in order to 

translate public news into views about future valuation. Otherwise newswatchers would be able to 

immediately incorporate the public news into prices.  Hence, the model is capable of  predicting a different 

price response to private information than to public information. 

 

The basic structure of the model is as follows.  The newswatchers purchase a risky asset that pays a 

single dividend TD  at Tt   where: 
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where the sj '  are ),0( 2iid .  There are z groups of newswatchers so that each 

z
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.  At time-t, newswatcher group-1 observes 

1

1zt , group-2 observes 
2

12t  etc. so 

each group observes a fraction 1/z of the innovation j .  Then at t+1, group-1 observes 
2

1zt , group-2 

observes 
3

1zt  etc. so each subinnovation of 1zt  has now been seen by a fraction 2/z of 

newswatchers.  Hence 1zt  becomes totally public by time ,1 zt  but the diffusion of information is 

slow. On average all the newswatchers are equally well informed.  Each newswatcher has CARA utility 

and at time-t their asset demands are based on a static optimisation (i.e. buy and hold until T) and they do 

not condition on past prices.  Without loss, the riskless rate is assumed to be zero and the newswatchers 

have an infinite horizon, T. 

 

The momentum traders have CARA utility but have finite horizons.  At each time t a new group of 

momentum traders enters the market and holds their position until jt  .  Momentum traders base their 
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demand on predictions tjt PP   and make forecasts based on 1tP  only (i.e. univariate forecast).  The 

order flow demand tF  from momentum traders is 

 

 1 tt PAF   

 

There are j momentum traders at t and their demand which is absorbed by the newswatchers (who act as 

market makers) is: 
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where Q = fixed supply of assets.  It can then be shown that equilibrium prices (which clear the market) 

are given by 
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where   in equilibrium can be shown to depend on the coefficient of risk tolerance 1/ , of the 

momentum traders.  The model is solved numerically and sensitivity analysis provides the following 

qualitative results. 

 

i) overshooting is greatest for the holding period horizon j = 12 months, where the overshooting 

is around 34% 

ii) As risk tolerance increases, momentum traders respond more aggressively to past price 

changes, equilibrium   increases and there is greater overshooting 

iii) As the information diffusion parameter z increases, the newswatchers become ‘slower’, 

momentum traders are more aggressive (i.e.   increases) and their profits higher, as short 

run continuation is more pronounced.  Also, overshooting increases leading to larger negative 

autocorrelations in the reversal phase 

 

The result in (i) is consistent with the findings of Jegadeash & Titman (1993, 1999) where momentum 

profits occur up to horizons of around 12 months.  The last result (iii) provides a further test of the model 

providing we can isolate stocks where information diffusion is likely to be relatively slow.  Hong, Lin & Stein 
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(2000) use ‘firm size’ and ‘analysts (residual) coverage’ (i.e. coverage after correcting for firm size) as 

proxies for slow information dissemination.  They find that six month momentum profits decline with 

market cap and with increased analysts’ coverage.  Also, in low analyst coverage stocks, momentum 

profits persist for horizons of about 2 years as opposed to less than 1 year in high coverage stocks. 

 

The above model gets one a long way with a minimum of assumptions but there are some limitations of 

the model.  The newswatchers are time inconsistent in that they decide their asset demands in a static 

framework at t, but they change their demands as they absorb the demands of the noise traders.  The 

model has underreaction to private news but this does not necessarily imply underreaction to public news 

(e.g. earnings announcements) found in the data.  However if the assimilation of this public news takes 

time as private agents undertake their respective calculations of its implications for prices, then the model 

can deliver post event drift.  Of course, if momentum traders are allowed to observe this public news, they 

may trade more quickly in which case there may be no eventual overreaction to public news and hence no 

price reversals.  However, it should also be noted that representative agent models cannot yield 

predictions of the type (i)-(iii) above (e.g. linking trading horizons with the pattern of autocorrelations, 

information diffusion and the size of continuation and long run reversals) as they only condition on public 

news which is immediately available. 

  

 

6. STYLE INVESTING 

In the previous chapter we noted the prevalence of ‘style investing’.  Casual empiricism suggest that many 

mutual funds are based on styles (e.g. value versus growth, momentum, small cap, tech stocks, real 

estate etc.).  It may be the case that investors allocate their wealth across a limited number of styles and 

are not particularly concerned about the allocation to individual stocks, within any given style category.  

Certainly there are economies of monitoring and transactions cost to style investing, compared with 

building a portfolio based on the analysis of individual stocks.  (Bernstein 1995, Swensen 2000).  We have 

already encountered models that rely on the interaction of momentum traders and some form of rational 

traders or arbitrageurs such as De Long et al (1990) and Hong & Stein (1999) where the demands for 

stocks by momentum (noise) traders depend on their absolute past performance.  Barberis & Shleifer 

(2003) in their model of style investing assume that investors momentum demand for stocks of a 

particular style-X depend on past returns on X relative to past returns on the alternative style-Y (e.g. X = 

old economy stocks, Y = new economy stocks).  Hence, momentum investors move into stocks in style-X 

and out of style-Y, if past returns on X exceed those on Y.  This increases the returns on assets in style-X 

and decreases the returns on assets in style-Y.  There is negative autocorrelation across assets in the two 
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different styles at short lags.  But Y eventually rises towards its fundamental value and hence at long lags 

the autocorrelation between xtP  and ktyP ,  (for large-k) will be positive. 

 

There are arbitrageurs or fundamental traders in the model whose demand depends on their estimate of 

expected returns based on fundamentals (i.e. final dividends).  The arbitrageurs also act as market 

makers for the ‘switchers’, absorbing their changing demands.  The model delivers a market clearing price 

for all assets but because the fundamental traders are boundedly rational and do not know the time series 

properties of the change in demand of the switchers, the market clearing price differs from that when there 

are only fundamentals traders. 

 

From the above description one can see that the broad set up of the equilibrium model has features in 

common with Hong & Stein (1999) but the different behavioural assumptions of the switchers and 

fundamental traders does lead to some different predictions.  Before we examine the latter, we briefly 

present the main elements of the model and we derive the equilibrium market price for assets in style-X 

and style-Y.   

 

There are 2n (=100 say) risky assets in fixed supply (and the risk free asset has infinitely elastic supply 

and a zero return).  Each risky asset is a claim to a single liquidating dividend to be paid at a future time: 

 

 TiiiOiTi DD ,2,1,,, ...    

 

where it  are announced at time t and ),0(~)'...,( ,2,2,1  Dtnttt N  and iid over time.  There are 

2 styles X and Y with assets 1 to…n in style-X and n + 1 through 2n in style-Y.  The return (= price 

change) to style-X is: 
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Each asset’s shock it  depends on a market factor (common to both styles), one style factor (either X or 

Y) and an idiosyncratic cash flow shock, specific to a single asset-i.  Each of these factors has a unit 
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The demand by switchers depends on the relative past performance of the two styles.  For assets-i in 

style-X, the number of shares demanded is: 

 

 




 






 


1

1

,,,1

2

1 t

k

S

txktyktxkS

it
n

NPP

n
N


  

 

with 10   giving declining weights on past relative performance.  Symmetrically, for assets-j in style-

Y: 
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The above assumes that style investors move their demand from one style to another (e.g. value to 

growth stocks) within the same asset class (i.e. stocks) and do not move funds out of other asset classes 

(e.g. cash, bonds, FX) when they wish to switch styles.  This may be largely true of institutional investors 

who have fairly constant ‘strategic’ asset allocations across alternative asset classes.  Also transactions 

costs might imply that a favoured style is financed from sales of one (or a few) badly performing ‘styles’, 

rather than many.  There may also be ‘rules of thumb’ that result in natural twin styles (e.g. value versus 

growth), so when one style is doing well the ‘twin style’ nearly always does badly.   

The fundamental traders maximises expected end-of-period utility of wealth using a CARA utility function.  

Hence when returns are normally distributed, optimal asset demands are linear in expected returns. 
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2 )nP  and   is the degree of 

risk aversion.  If the fixed supply of the 2n assets is given by the vector 
S

t

F

t NNQ  , then substituting 

S

t

F

t NQN   in the above equation gives: 
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Iterating forward and noting that tT

F

tT

F

t DDEPE  )(  then  
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where .)...,( '

,21 tntt DDD    The covariance matrix 
FV  is assumed to be time-invariant and have the 

same structure as the cash flow covariance matrix  D .  The term )( S

kt

F

t NE   is assumed to be 

constant so that fundamental traders are boundedly rational and do not calculate the time series 

properties of 
S

ktN   but merely absorb some of the demands by the switchers.  Dropping all the non-

stochastic terms gives: 

 

 
S
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with the price of asset-i in style-X: 
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where   depends directly on   and on the parameters of the covariance structure of  
D

V .  The 

price of asset-j in style-Y is the same form as the above equation but with the sign on )( yx PP    

reversed (i.e. symmetry).  With only fundamental traders tt DP   but with switchers, price deviates from 

fundamentals and the deviation is persistent if   is close to 1. 

 

The model is calibrated with 95.0,5.0,25.0   sm  and 093.0  (so that equilibrium return 

volatility broadly matches US data) and in turn this gives 25.1)/( 1  n .  They take n = 50 so there 

are 50 assets in each style, (X and Y) and 50ioD  for all-i. 

 

PREDICTIONS 

First consider the co-movement of style-returns.  If there is a one-time cash-flow shock to style-X (i.e. 

0,11,  iti   for Xit  ,1 ) then xP  follows a long damped oscillation around its (new higher) 

fundamental value, with xP  initially overshooting its long run equilibrium and then slowly mean-reverting.  
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This positive autocorrelation at short horizons and negative autocorrelation at long lags is also predicted 

by other momentum models (e.g. Hong &Stein 1999, De Long et al 1990).  The reason for this is 

straightforward.  Good news about cash flows in assets of style-X lead to price rises which stimulate the 

demand of switchers, pushing prices above fundamental value.  A new ‘feature’ of this style approach is 

that the prices of assets in style-Y initially fall as they are sold to help finance purchases of assets in style-

X (i.e. symmetry effect).  This makes style-Y look even worse relative to style-X returns, so there is 

increased momentum sales of style-Y assets and hence Y’s prices also overshoot.  Note that the price of 

Y moves without any cash flow news about the stocks in Y and the autocorrelation across styles is 

negative at short horizons.  Eventually fundamental traders sell the overpriced stocks in style-X and price 

moves to its long run fundamental level.  Bad news about stocks in style-X or good news about style-Y, 

would accelerate this process. 

 

So, style-X imposes a negative externality on assets in style-Y, the magnitude of which depends on how 

investors finance purchases in X.  If they sell small amounts from many other different style portfolios then 

the externality will be less than if they just sell from the single twin-style assets in Y. 

 

It follows from the above analysis that if (say) only one asset in style-X experiences a one-time positive 

cash flow, then the price of other assets in style-X will also experience increases (unrelated to cash flows), 

while stocks in style-Y will again experience a fall in price (again unrelated to cash flows).  In the Hong & 

Stein (1999) and De Long (1990) models good news about asset-i )( Xi  only affects the price of asset-

i and not the prices of other assets in the same style )( Xi , nor assets belonging to style-Y.  The 

predictions of these models differ in this respect. 

 

The above results are consistent with the success of investing in small caps between 1979 (Banz 1979) to 

around 1983, after which returns on small caps were poor.  Data snooping could also set off changes in 

returns unrelated to cash flow news, while the poor returns on some styles (e.g. value stocks in the US in 

1998 and 1999), even though cash flows were good (Chan et al 2000) may have been due to an 

increased demand for stocks viewed as being in alternative styles (e.g. large growth stocks). 

 

Investors move into all securities in a particular style category, if the past style return has been relatively 

good.  Hence there may be positive co-movement in individual asset returns within a particular style 

category which is unrelated to common sources of cash flows.  This is consistent with the co-movement in 

prices of closed end funds, even when their net asset values are only weakly correlated (Lee et al 1991) – 

this would not be predicted by De Long (1990) and Hong & Stein (2003) where individual asset returns are 

driven by underlying cash flows, nor in certain learning models (Veronesi 1999, Lewellyn & Shanken 

2002).  Of course, other models are capable of explaining some co-movement which is unrelated to cash 
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flows.  For example, in Kyle & Xiong (2001), after banks suffer trading losses they may sell stocks to 

restore their capital base.  This is consistent with the financial crisis of 1998 where aggregate stock prices 

in different countries fell simultaneously (even though different countries had different economic 

fundamentals) but it is not a strong candidate to explain co-movement in sub-categories of stocks (e.g. 

small caps). 

 

According to the fundamentals  approach, prices of Royal Dutch and Shell which are claims to the same 

cash flow stream, should move very closely together.  But Froot & Dabora (1999) show that Royal Dutch 

moves closely with the US market, while Shell moves mainly with the UK market.  Royal Dutch is traded 

mostly in the US and Shell mostly in London and hence they may ‘belong to’ these two ‘styles’.  Similarly if 

a stock is added to the S&P500 index (i.e. ‘a style’) then in the future one might expect it to co-vary more 

with the S&P500 and its correlation with stocks outside the S&P500 to fall (Barberis et al 2001). 

 

Finally, Barberis & Shleifer show that a momentum strategy based on style, that is buy into styles that 

have good recent performance, should offer Sharpe Ratios that are at least as good as momentum 

strategies based on the momentum performance of individual assets.  This is consistent with the 

momentum strategies based on industry portfolios (Moskowitz & Grinblatt 1999) and on size-sorted and 

book-to-market sorted momentum portfolios (Lewellen 2002). 

 

Even when more sophisticated arbitrageurs are introduced into the model so they understand the time-

variation in the momentum traders demands 
S

tN , this does not necessarily reduce the size and 

persistence in the mispricing.  This arises because as in the model of Delong et al (1990), the arbitrageurs 

do not sell when price is above fundamental value – they buy, knowing that the increasing demand by 

feedback traders will raise the price even further, after which the arbitrageurs exit at a profit.  In other 

words the arbitrageurs mimic the behaviour of the momentum traders after a price rise (or fall). 

 

The style model we have discussed above provides an analytic framework in which boundedly rational 

arbitrageurs and momentum style investors inter-react and gives new predictions compared to models 

based purely on momentum in individual stocks. 

 

      

7. PROSPECT THEORY  

Prospect theory is a descriptive model of decisions under risk, based on the psychological experiments of 

Kahneman & Tversky (1979).  They noted that individuals take gambles that violate the axioms of 

expected utility theory.  Their experiments indicate that individuals are concerned about changes in wealth 
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(rather than the absolute level of wealth) and they are much more sensitive to losses than to gains – 

known as loss aversion. 

 

In the models below which incorporate the prospect theory approach there are no exogenous noise 

traders interacting with the smart money.  Instead it is a fully optimising approach but agents have a non-

standard utility function: lifetime utility depends not only on consumption but on recent gains and losses on 

risky assets (i.e. the change in stock market wealth).  This is the ‘narrow framing’ assumption since gains 

and losses on other assets are ignored and even though investors have long horizons, they are worried by 

annual gains and losses. 

 

In a one-period model Benartzi & Thaler (1995) show that loss aversion can produce a high equity 

premium but in their intertemporal model Barberis et al (2001) find that they need an additional effect, a 

form of integral control which they refer to as prior losses.  (Thaler and Johnson 1990).  The idea is very 

straightforward and intuitively plausible, namely that if you have suffered losses over several previous 

periods (i.e. cumulatively), then a loss in the current period will be relatively more painful, so that your risk 

aversion increases.  The converse also applies, so that after a series of gains (e.g. in a casino)  

individuals become more willing to gamble, since they are now ‘playing with the house money’ – that is the 

Casino’s money, not their ‘own’.  Barberis et al (2001) show that loss aversion plus ‘prior losses’ can 

explain the stylised facts of a high equity premium and high volatility of stock returns, the low level and 

volatility of interest rates and the predictability in stock returns (e.g. a low price-dividend ratio leads to 

higher future returns). 

 

Clearly the idea of time varying risk aversion is similar to that in Campbell-Cochrane habit persistence 

model, but it is cumulative changes in wealth rather than cumulative levels of past exogenous 

consumption, that lead to changing risk aversion.  As we shall see, Barberis et al use the calibration 

approach and show that with ‘reasonable’ parameter values, the model yields time series behaviour for 

stock returns and the interest rate that are consistent with the stylised facts. 

 

Empirical evidence indicates a tendency for investors to sell winning rather than losing stocks (Shafrir & 

Statman 1985, Odean 1998) and this is broadly consistent with prior loss and loss-aversion, although 

these studies assume utility gains and losses only occur when they are realised via a sale of stock.  In 

Barberis et al utility gains and losses occur even when gains and losses are not realised. 
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THE MODEL 

There are two assets, a risk-free rate in zero net supply paying a gross rate of 
*

,tfR  and a risky-asset 

paying 
*

1tR  (between t and t+1).  The risky asset has a total supply of 1 unit and is a claim on a dividend 

sequence  tD .  There is a continuum of infinitely lived agents each endowed with one-unit of the risky 

asset at t=0, which they hold at all times.  In ‘Economy I’ agents consume the dividend stream (Lucas 

1978) and aggregate consumption Ct equals aggregate dividends Dt which therefore have the same 

stochastic process (ie.  iid lognormal): 

 

[15] 11   tcctt gcc     )1,0(~1 niidt  

 

 

In ‘Economy II’ consumption and dividends are separate stochastic processes which are still individually 

iid, but with different means and standard deviation and non-zero correlation between their respective 

errors – see below. 

Utility is a power function of consumption, with an additional function (.)  reflecting the dollar gain 

or loss Xt+1 experienced between t and t+1. 
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where  0 is the coefficient of relative risk aversion over consumption, ),( 1 tt zX   is the utility from 

gains and losses and tz  represents prior gains or losses.  If there are no prior gains or losses tz =1  

(which is further explained below). The term tb  is an exogenous scaling factor. An annual horizon is 

chosen. If St = $100 is the reference level then 

 

[17] )( *

,

*

11 tfttt RRSX    

 

so for  20.1*

1 tR  and 05.1* fR  then 15$1 tX .  The Kahneman–Tversky (1979) loss aversion 

utility function chosen is a piecewise linear function: 
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where 1 to reflect loss aversion and here there are no prior gains or losses.  This utility function is 

consistent with the experimentally observed risk aversion for small wealth bets.  The usual smooth utility 

functions (e.g. power) calibrated to match individuals’ risk aversion over small bets, lead to absurd results 

over larger gambles.  For example, Rabin (1999) shows that an expected utility maximiser who turns down 

a 50:50 bet of losing $100 or gaining $110, will also turn down a 50:50 bet of losing $1,000 and gaining 

any (including an infinite) amount of money.  Loss-aversion avoids this ‘Rabin paradox’. 

 

In Barberis et al, it is the expected utility of )( 1tX  that is important and they assume equal subjective 

probabilities of gains and losses  (rather than Kahnemann & Tversky’s (1979) non-linear transformation of 

these probabilities).  From [17] and [18] utility depends on returns 
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The scaling term tb  in [16] is required so that as wealth tS  increases over time, it does not dominate the 

utility function.  We can use either aggregate consumption or wealth as the scaling factor and Barberis et 

al choose the former (which is exogenous to the individual investor). 

 

[21] 0 

otot bCbb 
 

 

For 0ob , utility in [16] reverts to the familiar power function over consumption only, while the larger is 

ob  the greater the weight given to utility from wealth changes (i.e. returns) rather than to consumption. 

 

PRIOR OUTCOMES 

The idea that risk aversion is lower (higher) after a sequence of gains (losses) comes from responses to 

survey questions (Thaler and Johnson 1990) such as: 
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1. You have just won $30.  Choose between: 

a) a 50% chance to gain $9 and a 50% chance to lose $9 [8%] 

b) no further gain or loss [1%] 

 

2. You have just lost $30.  Choose between: 

a) a 50% chance to gain $9 and a 50% chance to lose $9 [3%] 

b) No further gain or loss [6%] 

 

The percentage of respondents choosing each option are shown in parenthesis and therefore you are 

much less willing to gamble with the ‘house money’ after you have lost $30. 

 

Gertner (1993) also shows that this ‘playing with the house money’ effect also works for larger bets, where 

the participants in a TV game show have to place bets on whether the next card drawn at random will be 

higher or lower than the card currently showing.  Linville & Fisher (1991) using survey evidence find that 

people prefer unpleasant events to occur far apart rather than close together and they also prefer a ‘bad’ 

followed by a ‘pleasant’ event to occur close together so one cushions the other. 

 

To implement the descriptive notion of prior outcomes, we require a historic benchmark level tZ  for the 

risky asset and then tt ZS   measures how much you are ‘up’ or ‘down’.  When tt ZS   the investor 

becomes less risk-averse than usual.  The state variable measuring prior outcomes is ttt SZz /  and a  

value of zt<1 represents substantial prior gains and hence less risk-aversion.  Utility is determined by 1tX  

and tz  so we now have ),( 1 tt zXv  .  The functional form for ),( 1 tt zXv   is simple but ingenious and 

incorporates a) utility loss depends on the size of prior gains or losses b) prior gains are penalised less (in 

utility terms) than prior losses.  We set 1* fR  for simplicity (see Barberis et al 2001 for the case of 

1* fR ) and we split returns into two parts, relative to a benchmark level.  

 

Suppose we begin with a benchmark level of 90$tZ  and 100$tS , so 9.0tz  and we 

have prior gains.  If stock prices fall in t+1 to 80$*

1 tt RS  we do not penalize all of the loss of $20 by 

0.2 say.  The loss from $100 to the benchmark 90$tZ  is only penalized with a weight of 1 and the 

loss below the benchmark (i.e. from $90 to 80$1 tS ) is penalized at 0.2 .  Hence the overall 

disutility of the $20 loss is:  
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 [22] Change in  Utility     =     (90 – 1) (1) + (80-90) 2.0 =  30  

 

[23]  Change in  Utility    )()1()( *

1 ttttt ZRSSZ    

        )()1()1( *

1 ttttt zRSzS       

If losses are small enough ttt ZRS 

*

1   or equivalently tt zR 

*

1 , then the entire loss is only penalized at 

the lower rate of 1.  Consider the impact on utility in two cases: prior losses and prior gains. 

 

CASE A: PRIOR GAINS: zt1 
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Hence if 90$,100$  tt ZS  and 90$*

1 tt RS  then 9.0*

1  tt zR  and current returns of 1*

1 tR  = 

–10% just offset the historic prior gains of 10% and receive a utility loss weight of 1. But if 80$*

1 tt RS  

then 9.08.0*

1  tt zR  and the current loss of 20% implies the value of 80$*

1 tt RS  is below its 

historic reference level of  tZ =$90 and the ‘pain’ in terms of utility loss is greater (i.e.   comes into play in 

[24]). 

 

CASE B: PRIOR LOSSES zt>1 

A similar scenario applies to when we begin from a situation of prior losses, except we assume that any 

further loss, inflicts even greater pain so that here we make   an increasing function of prior losses:  
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Let 2  and suppose k is set at 10. Let Zt =$110 and 100$tS  which implies prior losses of $10 and 

tz =1.1.  So when tz  increases from 1.0  to 1.1 (i.e. higher prior losses) the pain of additional losses are 
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now penalized at )( tz  = 2.0+10(  0.1) = 3 rather than 0.2 .  The only further ‘realistic’ requirement is 

that tz  should move sluggishly relative to tS  so that when tS  rises (falls) then tZ  rises (falls) but by less 

than St. 
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where R = constant and   measures the degree of sluggishness.  Now    can be varied, so that 0  

implies 11 tz  so that tZ  tracks tS  one-for-one while 1  implies 1tz  responds sluggishly.  For 

1 , when RRt 

*

1  then  1tz  falls relative to tz   

 

Optimisation 

The intertemporal optimisation problem is 
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where  )( *

,

*

11 tfttt RRSX   and the ‘wealth’ constraint (with no labour income) is: 

 

[29] )()( *
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1
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,1 tftttfttt RRSRCWW    

 

and the relationships in [26] and [27].  The model is calibrated and then simulated to see if it produces the 

stylised facts in the real world data, with particular reference to the equity premium puzzle. Some of the 

parameters are chosen using historic average values, some based on behavioural studies while others 

are chosen to ‘match’ certain properties found of the data. The ‘baseline’ solution is obtained numerically, 

using consumption growth cg = 1.84% p.a. with c  = 3.79%, risk aversion (over consumption) 0.1  

and the time preference rate  =0.98.  These parameters ensure that the equilibrium risk free rate 

1* fR  = 3.86, (see [31]) equals that found in the data and hence ensures there is no ‘risk-free rate 

puzzle’.  
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A range of values for k  are used, with increasing values of k  indicating the increased pain of a loss when 

it follows earlier losses. For example k =3 allows average loss aversion to remain around 2.25.  Suppose   

tz  is initially equal to one and the stock market falls by 10%.  Then with  =1 for example, tz  moves to 

1.1 and any additional losses are penalized at 2.25 + 3 (0.1) = 2.25 – only a slight increase in ‘pain’ (see 

[25]).  But  with the pain of a loss k = 50, the above implies that if the stock market falls by 10%, then (with 

 = 1) any additional losses are penalised with a weight of 2.25 + 5 = 7.25.  As we see below, increasing 

k  tends to increase the simulated equity premium and bring it closer to that observed in the data. The 

constant ‘R’ is set at a level to ensure the unconditional mean of zt = 1.  Simulation results are given for 

various values of 0b , since we have no priors on the likely value for this parameter. 

 

The loss aversion parameter is taken to be 2.25. The parameter   controls the persistence in tz  and 

hence the persistence in the price-dividend ratio:  =0.9 (i.e. sluggish response) is chosen so that the 

simulated price-dividend ratio has autocorrelation properties close to that found in the data.   

 

The numerical solution procedure is complex and uses an iterative technique since the state 

variable 1tz  is a function of both the dividend-price ratio and 1t  and is of the form ),( 11   ttt zhz  .  

Using Monte Carlo simulation, 10,000 draws of 1t  give a series for 1tz  which in turn can be used to 

simulate returns and the dividend-price ratio.   

 

RESULTS: ‘ECONOMY I’    

When dividends have exactly the same stochastic process as consumption, results on the average equity 

premium and its volatility are not very impressive.  For 3,20  kb  the simulated equity premium is 

0.88% p.a. (s.d. = 5.17% p.a.) while in the real data these are 6.03 (s.d. =20.02).  Even when 0b  is 

increased to 100 (giving the prior loss part of the utility function more weight) and k  to 50 (ie. higher loss 

aversion for any given prior losses), the simulated mean equity premium only rises to 3.28% p.a. (s.d. = 

9.35). 

 

RESULTS: ‘ECONOMY II’  

We now turn to ‘Economy II’ where dividends follow: 

 

11   tddtt gdd    ..%0.12..%84.1 apandapgwith d    
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 and the correlation between shocks to consumption and dividend growth is taken to be 0.15. The model 

generated ‘statistics of interest’ are shown in table 2 along with their empirical counterparts. 

[Table 2 – Barberis- here] 

For 3,20  kb  the model generates an equity premium of 2.62% p.a. (s.d. = 20.87) which is better 

than for ’Economy I’  but still less than the empirically observed 6.03 (s.d. =20.02).  If we increase the pain 

due to prior losses so that 1020  knowbutb  the model delivers an equity premium of 

5.02%p.a. (s.d. = 23.84) much closer to that in the real data, but accompanied by only a modest increase 

in the average level of loss aversion from 2.25 to 3.5.   

 

The solution for the stock return can be written: 

 

  1

)(

)(1 1

1





 tddg

t

t

t e
zf

zf
R


 

 

so allowing a separate process for dividends with %12d  (whereas %79.3c ) provides the extra 

volatility in stock returns. Intuitively, the higher volatility arises because if there is a positive dividend 

innovation, this leads to higher stock prices and a higher return.  But this increases prior gains so the 

investor is less risk averse, which lowers the rate at which future dividends are discounted thus leading to 

even higher prices and greater movement (volatility) in returns.  (The reverse applies for a negative 

dividend innovation, with the added ‘kicker’ if there are prior losses).  Since returns are more volatile on 

average, and the investor experiences more losses, then the loss aversion requires a higher equity 

premium.  Note that without the assumption of prior outcomes (i.e. set tz  to zero) the model with 0b = 2 

generates a very small equity premium of around 2.0% (std dev = 12%) and this only rises to 2.88% (s.d. 

= 12%) for 0b =100.  

 

The model uses as one input a low correlation of innovations in dividends and consumption 

growth of 0.15 – close to that in the actual data of around 0.1. The model then generates a low correlation 

between consumption and stock returns.. This is because returns respond to dividend news and any 

change in risk aversion due to changes in returns.  In the model both of the latter are largely driven by 

shocks to dividends  which have a low correlation with consumption – hence returns and consumption are 

only weakly correlated in the model (and in the real world data).  This low correlation between 

consumption growth and stock returns is not present in the Campbell-Cochrane (1999) habit persistence 

model where changes in risk aversion and hence returns are driven by consumption, implying a high 

correlation between these variables. 
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Long horizon predictability also arises from the slowly changing degree of risk aversion, due to the 

sluggish response to prior gains or losses (see table 2).  A positive dividend innovation leads to rising 

prices, hence lower risk aversion and even higher prices.  The price-dividend ratio will now be high.  The 

investor is now less risk averse and therefore subsequent desired returns will be lower.  Hence the price 

dividend ratio helps predict future returns, which is consistent with the empirical work of Campbell-Shiller 

(1988).  Hence, investor’s risk aversion changes over time because of prior losses or gains, so expected 

returns also vary over time in the model, which leads to predictability.  The price-dividend ratio in the 

model is also highly persistent and autocorrelated (table 2).  

 

The model also produces negatively autocorrelated returns since high prices (returns) lead to 

lower risk aversion and hence lower returns in the future (table 2).  Negatively autocorrelated returns imply 

long-horizon mean reversion (e.g. Poterba and Summers 1988, Fama-French 1988, Cochrane 2001 – as 

noted in earlier chapters).   

 

What about the risk-free rate?  In this model the risk-free rate is decoupled from the prospect theory 

portion of the utility function and is given by the standard Euler equation: 

 

[30] 1 =   

 )/( 1

*

tttf CCER  

 

and in equilibrium: 

 

[31] 
22* )2/(lnln ccf gR    

 

The mean of the risk-free rate and its volatility are primarily determined by ( cg ) and the volatility of 

consumption growth, where cg = 1.84% and c = 3.79%.  Hence, the model implies a low value for the 

mean of the risk-free rate, with relatively low volatility.  Although the Euler equation for Rf is decoupled 

from the prospect theory utility function, it is the latter that allows more volatility in the return on the risky 

asset.  The Euler equation is: 

 

[32]    ),(ˆ)/(1 *

11

*

1 tttotttt zRvEbCCRE 



   
 

 

and the average return on the risky asset depends on changes in wealth relative to prior losses, as well as 

the ‘standard’ consumption growth term. 
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Note in table 2, that the model explains the average price-dividend ratio but not its volatility which has a 

standard deviation of 2.25%-2.5% in the model but 7.1% in the data.   Additional state variables (e.g. 

consumption relative to habit) would increase the volatility of the models’ price-dividend ratio but this is left 

for further work.  

 

Is it the loss aversion parameter   or the prior loss parameter tz which generates the key results in 

‘Economy II’ ?   The solution for returns (given 0tz ) is  

 

1111

1

1








 tddg

t

t

t

tt

t e
f

f

P

DP
R
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where tf  is the dividend-price ratio, which does not now depend on tz .  The volatility in 1tR now 

depends only on the volatility of log dividend growth d of 12% , which is not sufficient to match the data.  

Hence prior losses are needed in the utility function, in order to change the degree of loss aversion and 

hence move expected returns more than cash flows by allowing changes in the discount rate.  So the key 

factor in this model is that returns must move more than cash flows.  Note however that changes in loss 

aversion are not the only possible reason for this result.  One could also have changing perceptions of risk 

or ‘over-reaction’ to dividend news or perhaps, learning about some key parameters in the model (e.g. the 

mean rate or volatility of dividend growth) – these are issues for future research. 

 

The basic conceptual ideas behind this prospect theory model are rather similar (but not identical)  

to those in the Campbell-Cochrane (1999) habit persistence model.  Both models require utility to depend 

on a state variable relative to its recent past.  For Campbell-Cochrane this is excess consumption 

tttt XXCS /)(   and changing risk aversion is most sensitive when tC is close to tX  (i.e. close to 

habit consumption).  In Barberis et al it is current stock returns relative to recent prior gains or losses (i.e. 

the tz  variable) that is important.  In both models, the variables tS  and tz  are assumed to be sluggish, 

since some ‘sluggishness’ is required to ‘fit’ the observed persistence in the dividend-price ratio, which 

gives rise to long-horizon predictability.   

 

In both models risk aversion changes over time depending on their respective state variables.  

Campbell-Cochrane use only consumption (relative to habit) in the utility function while Barberis et al have 

utility depending on consumption and (prior) returns (i.e. changes in wealth).  The Barberis et al model has 
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a low value for 0.1  but you need the additional (prior) loss aversion term in the maximand to fit the 

stylized facts found in the data.  The Campbell-Cochrane model requires a high degree of risk aversion 

(which depends on consumption relative to habit) but the utility function is ‘more conventional’ and 

parsimonious.  Broadly speaking, since these are calibration models and both broadly mimic the stylised 

facts, which model you favour depends in part on how realistic you find the assumptions of each model.  

But that takes us outside the realms of positive economics.  These are both interesting models and maybe 

they can be usefully extended to include other elements such as learning behaviour and even the addition 

of some non-rational traders. 

 

The reader should be aware that there are now a plethora of behavioural models incorporating for 

example: systematic forecasting errors for earnings using public information (Barberis, Shleifer and Vishny 

1998), initial overconfidence about one’s forecasts based on private information which is tempered by the 

arrival of public information (Hershleifer and Subrahmanyam 1998) and the interaction of rational 

‘newswatchers’ and momentum traders (who only look at past prices) – Hong and Stein 1999.  An 

excellent overview can be found in Barberis and Thaler (2001). 

 

8. SUMMARY  

 There has been an explosion in the behavioural finance in recent years resulting in a wide 

variety of models which attempt to explain observed anomalies (e.g. closed end fund 

discounts, momentum profits) and the ‘stylised facts’ (e.g. equity premium, predictability in 

stock returns).  The explicit models are usually not tested by using regression techniques 

but by some form of calibration and simulation. 

 

 Some behavioural models amend the standard utility function to include variables other 

than consumption, for example changes in wealth due to stock market fluctuations and 

investors may suffer from ‘loss aversion’.. 

 

 Other behavioural models concentrate on the interaction between rational or smart money 

traders and noise traders who (often) are assumed to base investment decisions on past 

price movements.  The timing of private and public information on future cash flows 

between ‘newswatchers’ and momentum traders is often crucial in producing short term 

momentum profits and long term price reversals and hence predictability.  Cross 

correlations amongst stocks (whose cash flows are not correlated) can be rationalized in 

a mode of style investing. 
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 The De Long et al model has rational agents and noise traders maximizing expected end of 

period wealth but the noise traders can be irrationally optimistic or pessimistic about future 

returns.  This noise trader risk implies that equilibrium price can be permanently below the 

fundamentals price (even when the noise traders have the same expectations as the rational 

traders). 

 

 The Schleifer-Vishny model highlights the interaction between the costs of borrowing (to 

purchase shares) and the time information about a firm’s future prospects is revealed.  

Mispricing is greater, the longer the time it takes to reveal to the market, the success of the 

firms investment decisions.  This might encourage short-termism by managers in their choice 

of investment project.   

 

 Some noise trader models such a Kirman (1993) rely on contagion and conversion of opinion 

to generate rapid and large price movements, which are consistent with the observed data. 

 

 Prospect theory assumes individuals care about gains and losses, as well as the level of 

consumption and investors suffer from loss aversion. In Barberis et al (2001) individuals 

maximize lifetime utility from consumption and changes in wealth. The model is then 

calibrated (from observed consumption and dividend data) and simulated.  The predictions of 

the model ‘fit’ a number of stylized facts, which include a low level and volatility in the risk free 

rate, long horizon predictability of stock returns and a relatively high equity premium (but lower 

than that observed in the real data). 

 

 There has been tremendous progress in producing a wide variety of ‘behavioural models’, 

which will continue to influence our views of the underlying causes of observed 

phenomena such as excess volatility, the equity risk premium, stock return predictability 

and the anomalies literature. 
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APPENDIX I 

THE DE LONG ET AL MODEL OF NOISE TRADERS 

 

The basic model of DeLong et al (1990) is a two period overlapping generations model.  There are no 1st-

period consumption or labour supply decisions: the resources agents have to invest are therefore 

exogenous.  The only decision is to choose a portfolio in the 1st-period (i.e. when young) to maximise the 

expected utility of end of period wealth.  The 'old' then sell their risky assets to the 'new young' cohort and 

use the receipts from the safe asset to purchase the consumption good.  The safe asset s is in perfectly 

elastic supply.  The supply of the uncertain/risky asset u is fixed and normalised at unity.  Both assets pay 

a known real dividend r (riskless rate) so there is no fundamental risk.  One unit of the safe asset buys 

one unit of the consumption good and hence the real price of the safe asset is unity. 

 

The proportion of noise traders NT is ,  with )1(   smart money SM operators in the market.  The SM 

correctly perceives the distribution of returns on the risky asset at t+1.  NT can be 'bullish' or 'bearish' and 

misperceive the true price distribution.  The NT average misperception of the expected price is denoted 

*  and at any point in time the actual misperception t  is: 

 

  )*,(~ 2 Nt  

 

Each agent maximises a constant absolute risk aversion utility function in end of period wealth, W : 

 

[A2]  )2exp( Wu   

 

If returns on the risky asset are normally distributed then maximising [A2] is equivalent to maximizing 

 

[A3]    
2

wEW   

 

where EW  = expected final wealth,   = coefficient of absolute risk aversion.  The SM therefore chooses 

the amount of the risky asset to hold, 
s

t  by maximizing 

 

[A4]   2

1

2

1 )]1([)(   ptt
s

tt

e

tt

s

to rPPrcUE   

 

where 0c  is a constant and 
2

1ptt  is the one period ahead conditional expected variance of price: 
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[A5] )( 11

2

1   ttttpt PEPE  

 
The NT have the same objective function as the SM except her expected return has an additional term 

t

n

t   (and of course
n

t  replaces 
s

t  in [A4]).  These objective functions are of the same form as those 

found in the simple two-asset, mean-variance model (where one asset is a safe asset). (check KC still 

included?)  Setting 0/)(  tUE   in [A4] then the objective function gives the familiar mean-variance 

asset demand functions for the risky asset for the SM and the NTs 

 

[A6] )(2/ 2
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where   .111 tttt

e

t PrPrR     The demand by NTs depends in part on their abnormal view of 

expected returns as reflected in t .  Since the 'old' sell their risky assets to the young and the fixed supply 

of risky assets is 1, we have : 

 

[A8]  1)1(  n

t

s

t   

 

Hence using [A6] and [A7], the equilibrium pricing equation is : 

 

[A9]   tpttttt Pr
r

P  


 

2

11 2
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The equilibrium in the model is a steady state where the unconditional distribution of 1tP  equals that for 

tP .  Hence solving [A9] recursively : 
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Only t  is a variable in [A10] hence : 

 

[A11]  
2222

1

2

1 )1/( rptptt     
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where from [A1], ),0(* 2 Nt  .  Substituting [A11] in [A10] we obtain the equation for the price 

level given in the text : 

 

[A12]  
2

22*
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rrrr
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APPENDIX II 
 

THE SHLEIFER-VISHNY MODEL OF SHORT TERMISM 

 

This appendix formally sets out the Shleifer-Vishny (1990) model whereby long-term assets are subject to 

greater mispricing than short-term assets.  As explained in the text this may lead to managers of firms to 

pursue investment projects with short-horizon cash flows in order to avoid severe mispricing and the risk 

of a takeover.   

 

There are 3-periods 0, 1, 2 and firms can invest either in a 'short-term' investment project with a $ payout 

of sV  in period-2 or a 'long-term' project also with a payout only in period-2 of gV .  The key distinction 

between the projects is that the true value of the short-term project becomes known in period-1, but the 

true value of the long-term project doesn't become known until period-2.  Thus arbitrageurs are concerned 

not with the timing of the cash flows from the project but with the timing of the mispricing and in particular, 

the point at which such mispricing is revealed.  The riskless interest rate is zero and all investors are risk 

neutral. 

 

There are two types of trader, noise traders NT and smart money SM (arbitrageurs).  Noise traders can 

either be pessimistic )0( iS  or optimistic at time t = 0 about the payoffs iV  from both types of project (i 

= s or g).  Hence both projects suffer from systematic optimism or pessimism.  We deal only with the 

pessimistic case (i.e. 'bearish' or pessimistic views by NTs).  The demand for the equity of firm engaged in 

project i (= s or g) by noise traders is : 

 

[A1]  iii PSViNTq /)(),(   
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For the bullishness case q  would equal iii PSV /)(  .  Smart money (arbitrageurs) face a borrowing 

constraint of b$  at a gross interest rate R > 1 (i.e. greater than one plus the riskless rate).  The SM 

traders are risk neutral so they are indifferent between investing all b$  in either of the assets-i.  Their 

demand curve is: 

 

[A2]  ii PbniSMq /),(   

 

where in   = number of SM traders who invest in asset-i (= s or g).  There is a unit supply of each asset-i 

so equilibrium is given by: 

 

[A3]  ),(),(1 iNTqiSMq   

 

and hence using [A1] and [A2] the equilibrium price for each asset is given by : 

 

[A4]   bnSVP iii

e

i   

 

It is assumed that iii Sbn   so that both assets are mispriced at time t = 0.  If the SM invests b$ , at t = 0, 

she can obtain 
e

sPb /  shares of the short-term asset.  At t  1 the payoff per share of the short-term asset 

sV  is revealed.  There is a total $ pay-off in period-1 of )/( e

ss PbV .  The net return NRs in period-1 over 

the borrowing cost of bR  is : 
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where we have used equation [A4].  Investing at t = 0 in the long-term asset, the SM purchases 
e

gPb /  

shares.  In period t = 1, she does nothing.  In period t = 2, the true value gV  per share is revealed which 

discounted to t+1 at the rate R  implies a $ payoff of RPbV gg / .  The amount owed at t = 2 is 
2bR  which 

when discounted to t+1 is bR .  Hence the net return in period-1 gNR  is : 
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The only difference between [A5] and [A6] is that in [A6] the return to holding the (mispriced) long-term 

share is discounted back to t=1, since its true value is not revealed until t=2.  In equilibrium the returns to 

arbitrage over one period, on the long and short assets must be equal )( sg NRNR   and hence from 

[A5] and [A6] : 

 

[A7]  
e

s
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e

g

g

P
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
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Since 1R , then in equilibrium the long-term asset is more underpriced (in percentage terms) than the 

short-term asset (when the noise traders are pessimistic, )0iS .  The differential in the mispricing 

occurs because payoff uncertainty is resolved for the short-term asset in period-1 but for the long-term 

asset this does not occur until period-2.  Price moves to fundamental value sV  for the short asset in 

period-1 but for the long asset not until period-2.  Hence the long-term fundamental value gV  has to be 

discounted back to period-1 and this 'cost of borrowing' reduces the return to holding the long-asset. 
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 TABLE 1 

 ARBITRAGE RETURNS : PERFECT CAPITAL MARKET 

 

 

Assumptions :   

Fundamental Value = $6 

Current Price = $5 

Interest rate, r = 10% per period 

Return on risky asset, q = 10% per period (on fundamental value) 

Smart Money borrows $5 at 10% and purchases stock at t=0. 

   
 

Selling Price 

(including 

dividends) 

Repayment of Loan Net Gain DPV of Gain 

 (at r=10%) 

Period-1 6(1+q) = $6.60 5(1+r) = $5.50 $1.10 $1 

Period-2 6(1+q)2 = $7.26 5(1+r)2 = $6.05 $1.21 $1 
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TABLE 2 

MODEL GENERATED STATISTICS AND EMPIRICAL VALUES 

ECONOMY II 

 (BARBERIS ET AL 2001) 

 
 

 Model Values Empirical Values 

 

 

Excess Stock Return 

(Equity Premium) 

 
bo=2,k=3          bo=2,k=10 

 
 

Mean 
Standard Deviation 
Sharpe Ratio 
Average Loss Aversion 

  2.62                  5.02 
 20.87                23.84 

0.13 0.21 
2.25                  3.5 

6.03 
20.02 
0.30 

- 

 

Price-Dividend Ratio 
Mean 

Std.Dev. 

 
 

22.1                  14.6 
2.25                    2.5 

 
 

25.5 
 7.1 

 

Return Autocorrelations 
Lag –1 
       -2 
       -3 
       -4 
       -5 

 
 
-0.07                -0.12 
-0.03                -0.09 
-0.04                -0.06 
-0.04                -0.04 
-0.02                -0.03 

 
  

0.07 
-0.17 
-0.05 
-0.11 
-0.04 

 

Corr {(P/D)t,(P/D)t-k} 
k=1 
k=3 
k=5 

 
 

0.81                  0.72 
0.53                  0.38 
0.35                  0.20 

 
 

0.70 
0.45 
0.40 

 

Regression 

Rt,t+k = k+k(D/S)t 

1 

2 

3 

4 
 
(%) = % R-squared of 
regression 

 
 

 
4.6(2%)             4.4(6%) 
8.3(4%)             7.5(10%) 
11.6(5%)           9.7(12%) 
13.7(6%)         11.5(14%) 

 

 
 

 
4.2 (7%) 

 8.7 (16%) 
 12.3 (22%) 
 15.9 (30%) 

 

 
 

 

 

  

 


